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The Dominant T Wave and Its Significance
ADRIAAN VAN OOSTEROM, PH.D.

From the Department of Medical Physics, University of Nijmegen, Nijmegen, The Netherlands

The Dominant T Wave. Introduction: The shapes of the T waves as observed in different leads placed
on the thorax are very similar. The dominant T wave is introduced as a means to characterize this general
signal shape. Its relationship to the transmembrane potentials of cardiac myocytes is discussed.

Methods and Results: The source description of a biophysical model that previously was shown to yield
realistic T waveforms was analyzed in order to exploit its relation to the transmembrane potentials of the
cardiac myocytes at the surface bounding the myocardium. The product of this analysis is the dominant T
wave: a waveform that describes the slope of the transmembrane potential. It is shown that the dominant
T wave can be estimated easily from the matrix of sampled lead potentials. The timing of its peak reveals
the mean of the repolarization times of the involved transmembrane potentials. The amplitude of the peak
is the maximum downward slope of the transmembrane potential. This amplitude is independent of the
volume conductor effects of the tissues surrounding the heart. The estimate of the dominant T wave retains
this property.

Conclusion: The dominant T wave reflects the derivative of the recovery phase of a generalized transmem-
brane potential. Its amplitude is independent of the volume conductor properties of the tissues surrounding
the heart. This is a unique feature that greatly facilitates the interpretation and application of the other
signal features of the dominant T wave. (J Cardiovasc Electrophysiol, Vol. 14, pp. S180-S187, October 2003,
Suppl.)

dominant T wave, repolarization dispersion

Introduction

When looking at T waves recorded by multiple leads
placed on the thorax, the striking feature is that, apart from
differences in timing, sign, and amplitude of the observed
signals, their waveforms are quite similar. This holds true
irrespective of the particular lead system used: the stan-
dard 12-lead system or any other lead system involving a
larger or a smaller number of electrodes. In healthy sub-
jects, the variation in the observed waveforms of all leads
may be very small. An example of this is shown in Figure 1,
which depicts the 64 QRST waveforms observed in a healthy
subject.

In contrast, the standard deviations of comparable signals
pertaining to T waves in various types of cardiac disease tend
to be much greater. This observation has led to the explo-
ration of features expressing the dominance of one of the
signal components hidden in the ensemble of observed sig-
nals over that of other components.1 The appropriate tool here
is the singular value decomposition (SVD) of the matrix rep-
resenting all lead signals (rows of the matrix) at all sampling
points in time (columns of the matrix). This method is equiv-
alent to principal component analysis, the Karhunen-Loeve
expansion of signals, and factor analysis. If the spectrum of
successive singular values exhibits a steep downward slope
from its first dominant value onward, the data may be approx-
imated well by using the corresponding dominant principal
component (signal). The ratio of the first singular value to
the sum of all singular values indicates how well the data

Address for correspondence: Adriaan van Oosterom, Ph.D., Depart-
ment of Medical Physics, University of Nijmegen, Geert Grooteplein
21, 6525EZ, Nijmegen, The Netherlands. Fax: 31-24-3541435; E-mail:
avo@mbfys.kun.nl

doi: 10.1046/j.1540.8167.90309.x

can be represented by taking just the first term. This ra-
tio has been studied for its potential to quantify abnormal
repolarization.1

van Oosterom2 provided an explanation for this SVD ap-
proach to the T wave, derived from a biophysical model of
the genesis of the T wave, the same model used in this arti-
cle. The model was documented in detail by van Oosterom.3

The model describes the genesis of the T wave as a linear
combination of a collection of transmembrane potentials. An
early application of this concept can be found in the work of
Harumi et al.4 They demonstrated that T waves appear after
subtracting just two stylized transmembrane waveforms, each
having a slightly different timing. After an initially seemingly
unfounded use of this concept while modeling the T wave,5

a formal justification came out of the work of Geselowitz.6,7

The idea was applied by di Bernardo and Murray8 and inde-
pendently worked out in detail in a publication3 that formed
the inspiration for the current article.

This article introduces the dominant T wave, a concept
that was implied in previous work,3 and its relationship with
the downward slope of the transmembrane potentials of the
myocytes at the surface bounding the ventricles. It describes
a simple way of computing the dominant T wave, as well as
its relationship with various features of T waves observed on
the body surface. The latter T waves will be referred to as the
“common” T waves, Tcom.

The article is organized as follows. First, the biophysical
model that provides the basis for the subsequent introduction
of the dominant T wave is summarized. Next, the dominant
T wave is defined, and it is shown how it can be computed
from observed ECGs. Finally, various interpretations of the
properties of the dominant T wave are presented. The in-
termediate steps taken are expressed most efficiently by us-
ing the notations from linear algebra (mainly just a matrix
multiplication). These steps are included in Appendices A
to D.
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Figure 1. Collection of 64 simultaneous QRST waveforms recorded from a
healthy subject. The signals are shown superimposed in order to stress the
general similarities between the ST-T waveforms.

Theory

The Biophysical Model

A general formulation for the genesis of ECG waveforms
as observed on the body surface reads:

Φ = AS. (1)

In this formulation, a matrix multiplication, matrix S, rep-
resents the strengths of the current sources generating the
body surface potentials. Row n (n = 1, N) represents the time
course at T discrete time instants of source element n. The
nature of these source elements may be quite different. In the
case of the classic dipole, the basis of vector cardiography,
just N = 3, source elements are considered: the components
of the vector in three-dimensional space. In the source model
used in this article, numerous source elements are postulated,
located at a set of evenly distributed nodes specifying the
closed surface Sh bounding ventricular mass: endocardium,
epicardium, and their connection at the base of the ventricles.
To the source strengths at each of these nodes are assigned
the time courses of the transmembrane potentials of nearby
myocytes. The transmembrane potential at node n acts as the
local strength of an elementary double-layer element. This
source element may be likened to a current dipole normal to
the local surface Sh, with its strength also proportional to the
area of Sh represented by the node.

Matrix Φ represents the potentials observed on the body
surface. Its row l (l = 1, L) represents the ECG at lead l,
sampled at T consecutive time instants.

The L elements of column n of matrix A represent the
transfer of the source strength at node n to the potentials
of the L lead signals. The N elements of row l express the
contributions of the N nodes to the potential at lead l. Matrix
A incorporates all of the complexity of the volume conduction
properties of the thorax.

Equation 1 is a general formulation that holds true as long
as the transfer between sources and potentials at lead posi-
tions is independent of time. Here we will assume this to be
the case.

The source type described is called the equivalent double
layer (EDL). It is a completely general source description
known from physics that allows a unique specification of
potentials on the thorax by all sources active within an interior
closed surface. In its application to the modeling of the ECG
described in this article, the surface involved is Sh, and the
time course of the local double-layer strength is linked to that
of the local transmembrane potential.3,6-8

Whenever the double-layer strength is uniform over Sh,
the potential differences external to the double layer are zero,
because Sh is a closed surface. This corresponds to the well-
known fact that in a uniformly polarized state, myocardial
cells do not produce an external field. An important conse-
quence of this is that the sum of all elements of any row of
the transfer matrix is zero. Expressed in matrix notation:

Ae = 0, (2)

with e the unit vector of dimension N having elements of unit
value only. Another implication is that the mean level of the
instantaneous spatial distribution of the source strength does
not affect the corresponding mean level of the potentials in
the external medium. This allows one to shift the level of the
transmembrane potential in the fully polarized state to zero,
as is done in this article. The corresponding magnitude Vm
of the upstroke of the transmembrane potential is scaled to a
uniform value of 100 mV, being its order of magnitude.

For body surface potentials, Equation 2 signifies that their
mean value is unspecified and, hence, some ad hoc value has
to be assigned to it. In the standard 12-lead ECG, this value
is the mean of the potentials at the left arm, right arm, and the
left leg: the Wilson central terminal (WCT) reference. In this
article, we apply a shift resulting in zero mean value of the
potentials at all leads used: the zero mean reference (ZM).

In the implementation of the EDL source model, a uni-
form general shape S(t) is assigned to the time course of the
source strengths at all nodes on Sh. The time course used
is the stylized transmembrane potential shown by the solid
line in Figure 2. The particular waveform assigned to any
node n is timed to reflect the local depolarization δn: the
time of maximum slope of the local transmembrane potential.

Figure 2. Solid line: Stylized version of a transmembrane potential; full
scale 100 mV. Baseline shifted to zero. Dotted line: Derivative of the downs-
lope of the solid line, with inverted sign; full scale: 1 V/s = 1 mV/ms.
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Figure 3. Collection of the (257) rows of the source strength matrix S.
When applied to Equation 1 and used in combination with an appropriate
forward transfer matrix A, this source strength faithfully reproduced the
signals shown in Figure 1. Note that the dispersion of repolarization times
is smaller than that of the depolarization times.

Similarly, the timing of local repolarization at node n is spec-
ified by ρn: the moment at which the magnitude of the down-
ward slope of the transmembrane potential is maximal. For
the time course of the source strength at node n, we write
accordingly Sn(t) = S(t; δn, ρn). It is demonstrated in previ-
ous work3 that by specifying values for (δn, ρn) in combina-
tion with an appropriate volume conductor model, this source
model is capable of generating accurate QRST waveforms.
A complete set of Sn(t) curves, like those used in a previous
work,3 is shown in Figure 3. As a measure for the local action
potential duration (APD), we use αn = ρn – δn.

Defining the Dominant T Wave

The dominant T wave is introduced based on the analysis
of a biophysical model. In the next section, it is shown how
it can be computed from observed body surface potentials.

In this analysis, we concentrate on the electric potentials
related to the repolarization currents only, for which we de-
note the source strength at the nodes n as Sn(t) = S(t; ρn) =
D(t – ρn), with D( ) the shape of the downward part of the
solid line shown in Figure 2. The final part of this expression
reflects the fact that a uniform shape is assumed for the source
strength as a function of time, with its timing specified by ρn.
For nodes at which repolarization arrives later, the curve of
the source strength merely shifts to the right.

The repolarization times at all nodes differ: if they were
equal, there would not be a T wave, as follows from Equation
2. The mean value of the repolarization times at the N nodes is
denoted as ρ̄. Accordingly we may write ρn = ρ̄ + �ρn, with
�ρn the individual differences from the mean. In statistical
terms, the differences in the timing of repolarization at the
N nodes, viz, the dispersion of repolarization times, can be
specified by either the range of the ρn values or their standard
deviation. The latter is, of course, identical to the standard
deviation of the �ρn values.

The next step of the analysis makes use of the fact that
the duration of the downward slope is generally longer than
the range of repolarization times as defined by the ρn values.

The duration of the downward slope may be taken as the time
interval from 90% to 10% of the downward curve. This takes
about 100 msec. In a previous article,3 it was shown from
inverse computations that in healthy subjects the range of the
repolarization times of the nodes is about 50 msec. This is in
agreement with earlier invasive data shown by Franz et al.9

and Cowan et al.10 In Appendix A, it is shown that the time
course of the source strength at node n with timing ρn can
be approximated from the time course pertaining to the mean
repolarization time value ρ̄ as:

D(t − ρ̄ − �ρn) ∼= D(t − ρ̄) − D′(t − ρ̄)�ρn, (3)

with D′ denoting the time derivative of the downward slope
D(t − ρ̄). The approximation improves the smaller the shift
�ρn. It is demonstrated in Figure 4 that for a shift of as much
as 20 ms applied to D(t − ρ̄), the downward part of the solid
line shown in Figure 2, the approximation is fair.

In the final step leading toward the introduction of the
dominant T wave, we assume the range of �ρn values to be
small compared to the duration of the downward slope, as
discussed earlier. It is shown in Appendix B that under these
conditions, ψ l(t), the potential during the ST-T segment at
any lead l on the thorax, may be written as:

ψl(t) = wl D′(t − ρ̄), (4)

in which wl = −	nal,n�ρn, with al,n denoting the elements
of the transfer matrix A. The lead potential is denoted by ψ
rather than by ϕ to stress that the potentials relate to repolar-
ization only.

Equation 4 states that if the range of the repolarization
times is very small, the shapes of the T waves of all leads
on the thorax are identical: D′(t − ρ̄), having amplitudes that
are proportional to wl, factors that are specific for each lead
l. The factors wl are linear combinations of the �ρn values,
the individual differences from the mean of the repolariza-
tion times at the nodes n. The elements al,n of row l of the
transfer matrix A form this linear combination. Its outcome

Figure 4. Shift invoked by adding a scaled derivative. Left downsloping solid
line: Downslope of the shape shown in Figure 2. Dotted line: Derivative of
the downward curve multiplied by –20 (ms). Right solid line: Sum of the left
solid line and the dotted line. Note that the right solid line approximates the
left one but for a shift of 20 ms.
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determines the amplitude and sign of wl and, hence, the am-
plitude and sign of the T wave in lead l.

Based on the preceding analysis, the dominant T wave,
Tdom, is defined as:

Tdom(t) = −D′(t − ρ̄), (5)

the time derivative of the part of the transmembrane potential
during repolarization. The negative sign is inserted to force
the apex of Tdom to be positive. The shape of Tdom(t) is that
of the dotted line shown in Figure 2. Its peak value is about
0.75 V/s ( = 0.75 mV/msec). Its dimension reflects it being
a derivative with respect to time.

Methods

Estimating the Dominant T Wave

Now that the dominant T wave has been defined, it will
be shown how it can be estimated from observed ECGs.
Throughout, the analysis remains within the framework of
the modeling assumptions implied earlier, a uniform shape
of the downward part of the transmembrane potential D(t),
and extreme values of �ρn that are small compared to the
duration of the downward slope. Under these conditions, the
dominant T wave in fact completely “dictates” the shape of
the observed T waves. The QRST segment is divided into
two intervals, separated by the J point, with its timing de-
noted as tJ. Beyond tJ, repolarization currents exclusively
specify the observed potentials; prior to tJ, there is a mixture
of depolarization- and repolarization-related currents.

Several heuristic methods have been proposed in the liter-
ature for the identification of tJ from observed body surface
potentials, a problem that does not have a unique solution. In
the present study, it was identified from the RMS(t) curve,
with RMS(t) being the root mean square value of the poten-
tials at time instant t computed over all leads involved. In
particular, when using the ZM reference, as was done in this
study, the RMS(t) curve exhibits a clear local minimum at
the end of the QRS complex. This point in time was taken to
be tJ.

The Final Part of the Curve

The observed signals, data matrix Φ, were copied to a ma-
trix Ψ. The first tJ columns of this matrix were assigned zero
values. In this way, the elements of Ψ relate to repolarization
currents only. Next, for each of the rows of Ψ, a summation
of its elements was performed. This results in values that are
proportional to the so-called ST-T integrals, one for each of
the observed L lead signals. These values are used as weights
of the respective leads while computing a weighted mean
of the observed lead signals. For an upright T wave in any
lead, the ST-T integral is positive and, hence, so is the factor
weighting its contribution to the mean. For a negative T wave,
its weight also is negative and, hence, the scaled version is
upright. Biphasic T waves attain relatively small weights. The
weighted mean waveform resulting from the application of
this procedure, applied to the signals shown in Figure 1, is
shown in Figure 5 (solid line segment only). Appendix C de-
scribes the background of this procedure. Note that, because
the observed signals were referred to zero mean, a straight-
forward averaging of the ST-T signals would result in a curve
that is zero.

Figure 5. Shape of the dominant T wave as estimated from 64 QRST wave-
forms of a healthy subject. Solid line: Weighted mean of the signals beyond
the J point. Dashed line: Extrapolation down to t = 0. Dashed vertical lines
mark, from left to right, the time points used in the extrapolation: tJ, t1, t2,
t3 and tapex (see Appendix D).

The Leading Part

The solid line segment in Figure 5 has a waveform that
is similar to that of the dotted line shown in Figure 2. The
vertical scale of Figure 5 is, deliberately, unspecified. (The
scaling is discussed in the next paragraph.) The procedure
described earlier leaves the curve up to tJ unspecified. Dur-
ing this interval, the observed potentials are dominated by
depolarization-related currents, and, inevitably, all values of
the leading part of the curve, the dotted part, are “specula-
tive.” The specification of the leading part of the curve, as
presented later, was inspired by an examination of the body
surface potentials of 150 subjects (normal subjects and var-
ious patient categories) recorded during a previous study.11

The study used data collected by a 64-lead system.12 For all
subjects, the procedure applied to observed ST-T signals re-
sulted in weighted mean waveforms of the type depicted by
the solid line shown in Figure 5. An analysis of the weighted
mean signals of these subjects indicated that the early part
of the ST-T waveforms could be represented accurately by
means of an exponential curve. This observation was used to
estimate (by means of extrapolation) the shape of part of the
curve during the interval leading up to tJ. The parameters of
the exponential function were computed from three values of
the initial part of the mean signal, taken at equal time inter-
vals. Details of this computation are given in Appendix D.
The resulting extrapolation is indicated by the dotted line in
Figure 5.

The Scaling

The complete waveform shown in Figure 5 was taken to
be that of Tdom(t). The scaling of this waveform was done
as follows. Because Tdom(t) is the derivative of −D(t − ρ̄),
the integral over time of −D′(t − ρ̄) is equal to 100 (mV),
being the maximum value of D(t − ρ̄), the function shown in
Figure 2. As a consequence, the required scaling of the curve
shown in Figure 5 is performed easily by scaling it such that
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its integral over time is indeed 100 mV. The shape of Tdom(t)
resembles that of a positive T wave as observed on the body
surface.

Results

After having sampled the ECG signals and having stored
the samples in a computer memory, the computation of
Tdom(t) is a straightforward procedure. In Figures 1 to 6,
the data matrix involved was based on L = 64 observed
lead signals, sampled at T = 500 points at 1-msec intervals.
The matrix manipulations required to compute Tdom(t) take
<1 second.

Figure 6 depicts a set of computed dominant T waves.
These are derived from the 64 signals recorded in a previous
study.11 The curves shown in Figure 6 are derived from the
data of three healthy subjects, as well as from three cases
listed in the study as old myocardial infarctions (MIs).

In healthy subjects, the value of Tdom at the J point, t = t J,
is small, reflecting the small slope of the TMP during phase
2 of repolarization. A related property is that, because the to-
tal integral over time of Tdom(t) is fixed (100 mV), in healthy
subjects the width of Tdom(t) can be expected to decrease if its
amplitude increases. This idea was tested by plotting wh, the
half-width of Tdom, as a function of Tdom(tapex) as observed
in the 50 healthy subjects. The half-width was taken to be
the interval spanning two points on the Tdom(t) curve, one to
the left and the other to the right of the apex of Tdom, posi-
tioned at values 1/2Tdom(tapex). The result is shown in Figure
7. The solid line shown depicts the hyperbolic function wh ×
Tdom(tapex) = const, with const = 86.6 mV, being the mean
value of the 50 observed wh × Tdom(tapex) values. The other
basic statistics involved were (mean ± SD) Tdom(tapex) =
0.786 ± 0.097 mV/msec and wh = 111.8 ± 15.0 msec.

When the procedure for estimating Tdom was applied to
just the subset of eight independent signals among the stan-
dard 12-lead ECG (V1–V6, VR, and VL), the resulting Tdom(t)
waveforms were essentially the same. This is illustrated in
Figure 8, a scattergram of the Tdom(tapex) values of the 50
healthy subjects based on 64 leads and on the 8 leads. The
linear correlation coefficient of these two variables was 0.98.
The other statistics involved were (mean ± SD) Tdom(tapex)

Figure 6. Selected dominant T waves. Solid lines: Three healthy subjects.
Dashed lines: Three cases of old myocardial infarction.

Figure 7. Scattergram of Tdom(tapex) and the half-width wh as derived from
50 healthy subjects. Solid line depicts the function wh × Tdom(tapex) =
86.6 mV. See text for the significance of this function.

(8 leads) = 0.782 ± 0.100 mV/msec and Tdom(tapex) (64 leads)
= 0.786 ± 0.096 mV/msec.

Negative values of Tdom(t), appearing only during the final
part of the ST-T interval, were found exclusively in patient
data. An example of this is shown by one of the dashed lines
in Figure 6.

Discussion

The dominant T wave Tdom(t), as introduced in this article,
can be interpreted as representing the temporal behavior of
the slope of a “mean” type of transmembrane potential (TMP)
involved in the genesis of the ECG. The assumption involved
in the formulation of the background to the dominant T wave
may appear to be unrealistic: “real” TMP potentials may not
all have an identical shape during repolarization and the dis-
persion of the timing repolarization may be large, particularly
in cases of disease. However, even if the dispersion is large,

Figure 8. Scattergram of Tdom(tapex) values estimated from 64 leads and
those derived from eight leads in 50 healthy subjects, seven of whom (aster-
isks) were females.
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the model has been found to be capable of simulating biphasic
T waves on the ECG. The presence of such waveforms on the
ECG has relatively small effect on the estimation of Tdom: the
specific weighted mean used proved to be a robust estimator.
The assumption of a uniform “mean” shape of the downslope
is a very strong, first-order approximation. The effect of de-
viations from this mean shape (the second-order terms) has
been found to produce only relatively small differences in the
ECG.

Properties of Tdom

Because Tdom(t) is the gradient of a TMP, its amplitude
is independent of volume conduction effects: the effects of
the passive tissues surrounding the heart. Because of this,
differences in body size and heart position do not affect its
amplitude. Computing Tdom(t) does not require solving an
inverse problem. This is a property that is maintained in its
estimated variant, owing to the scaling based on its integral
over time. This is a unique feature, not shared by any other
magnitude feature of the potentials recorded on the body
surface.

In healthy subjects, the value of Tdom at the J point t = tJ is
small, reflecting the small slope of the TMP during phase 2 of
repolarization. For types of disease in which the TMP slope
during phase 2 of repolarization is substantial, the value of
Tdom(t) at the J point, Tdom(tJ), is expected to be larger than in
healthy subjects. This was confirmed by comparing its mean
value in the healthy subjects to those of all patient categories
contained in the database. This was found to be true, partic-
ularly for the old MI and angina patients. In two of the old
MI cases shown in Figure 6, clearly elevated ST segments
are shown. For some of the old MI patients, the elevation was
less apparent, probably indicating a more complete healing
over at the boundary of the infracted area. An illustration
of this is the middle of the three dashed curves shown in
Figure 6.

The extension of the dominant T wave, stretching into
the QRS interval as carried out by means of the exponential
function (Appendix D), was used in this work merely to make
sure that the scaling of Tdom(t) by means of its integral over
time makes sense in the presence of elevated Tdom(tJ) values.
However, it does focus the attention on the possible mixing
of depolarization currents and repolarization currents during
QRS, particularly if phase 2 of the TMP is steep.

Analysis as such indicates how the ST-T elevation seen in
Tdom(t) is linked to phase 2 of the TMP. The current clinical
interpretation of the ST-T slope as such in common T waves
remains an open question. The shape of Tdom(t) during the
time interval between the J point and the timing of the apex
could be fitted well by an exponential function. As such, there
is no single constant slope value that can be used to quantify
it. The parameter c as identified in Appendix D seems to be
more appropriate to specify this part of the curve.

In healthy subjects, the waveform of Tdom(t) was almost
identical to that of the dominant signal (principal component)
identified by means of the singular value decomposition of
the observed Ψ data. Correlations of >99.5% were found in
all cases. In most of these cases, the shape of Tdom(t) was also
very similar to that of the corresponding part of the RMS(t)
curve beyond t = tJ. Here the differences were larger, mainly
in the cases where both the dominant singular signal and

Tdom(t) were negative: by its nature, RMS(t) is always posi-
tive.

The peak value of Tdom(t) reflects the maximum down-
ward slope of the TMP. It was found in a previous study3

that the timing of the peak coincided with the mean of the
inversely computed repolarization times ρn. This also can
be seen in the results shown in the early model-based study
by Harumi et al.4 An important experimental confirmation
of the same fact can be found in the study by Fuller et al.13

Figure 5b of their article shows that the timing of the peak of
the RMS(t) curve was the same as the mean repolarization
time on the epicardium as observed under a wide diversity of
experimental conditions. This provides confirmation because
in the present material the timing of apex of Tdom(t) of apex
RMS(t) was essentially the same.

An interactive simulation package that uses Tdom(t) in the
simulation of Tcom(t) recently has been made available on
the Internet (www.ecgsim.com).14 This package can be used
to study the expression of Tdom(t) on body surface potentials.

Conclusion

The dominant T wave as introduced in this article forms
the theoretical link between gross cellular behavior of the my-
ocardium and the common T waveforms that result. In itself,
the dominant T wave has properties that seem to be worth-
while for inclusion in diagnostic procedures. It is the only
waveform with an amplitude that is unaffected by volume
conduction effects.

Appendices

Appendix A

Equation 3 follows from the application of the Taylor ex-
pansion, a tool well known from mathematics. Applied to
D(t − ρ̄ − �ρn) and small values of �ρn, this expansion
reads:

D(t − ρ̄ − �ρn)

= D(t − ρ̄) + ∂ D(t − ρ̄)

∂ρ̄
�ρn + · · · . (A1)

The specific nature of the D allows one to write ∂ D(t − ρ̄)
∂ρ̄

=
− ∂ D(t − ρ̄)

∂t ; hence, we have:

D(t − ρ̄ − �ρn)

∼= D(t − ρ̄) − ∂ D(t − ρ̄)

∂t
�ρn, (= Equation3)

q.e.d.

The approximation involved results from using just the
two leading terms of the expansion. For larger values of the
shift, subsequent terms in the Taylor expansion need to be
included.2 Here we use just the leading two terms.

Appendix B

Proof of Equation 4. The first term on the right in Equation
3, the function D(t − ρ̄), is identical for all nodes n. Simi-
larly, in the second term, the function D′(t − ρ) = ∂ D(t − ρ̄)

∂t
is identical for all nodes. Based on Equation 1, the potential
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during the ST-T segment at any lead l on the thorax may be
written as:

ψl(t) = 	nal,nsn,t = 	nal,n D(t − ρ̄ − �ρn)

= 	nal,n(D(t − ρ̄) − D′(t − ρ̄)�ρn))

= −	nal,n D′(t − ρ̄)�ρn.

The term pertaining to D(t − ρ̄) vanishes because of Equa-
tion 2; thus, the final result reads:

ψl(t) = −	nal,n D′(t − ρ̄)�ρn

= (−	nal,n�ρn)D′(t − ρ̄) = wl D′(t − ρ̄),

with wl = − 	n al,n�ρn, q.e.d.

Appendix C

The motivation for estimating the dominant T wave as a
weighted mean of the observed ST-T signals is as follows.
The starting point is Equation 4, which in matrix notation
reads:

Ψ = wdt, (C1)

with column vector w specified by w = −A ∆ρ and dt a row
vector denoting the major part of the dominant T wave beyond
tJ. Recall that Ψ relates to signals during this time interval
only. We now introduce the ST-T integrals of all observed
lead signals, which can be approximated numerically by
adding up all samples of the observed lead potential. In matrix
notation:

i = Ψe, (C2)

with i a column vector representing the ST-T integrals and e
a column vector having elements 1 only. By post-multiplying
Equation C1 by e, we find that:

Ψe = wdte. (C3)

The nature of dte is that of a scalar, denoted here by β, whose
value remains undetermined. From Equation C3 we see that
w = Ψe/β. We now pre-multiply both sides of Equation C1
by wt = etΨt/β, yielding:

etΨtΨ/β = wtwdt, (C4)

and we observe that wtw is an (unknown) scalar, denoted by
α. The final result demonstrates that the major part of the
dominant T wave can be estimated as:

dt = etΨtΨ/(αβ), (C5)

a function that is specified up to a scaling factor. The deter-
mination of this factor follows from demanding its integral
over time to be equal to be 100 mV, the value used in this
article to specify Vm, as discussed in the main text. Note that
the values of α and β need not be known.

Also note that the weighing factors w = Ψe/β involved in
computing the weighted mean of the ST-T signals are propor-
tional to the ST-T integrals of the corresponding lead signals.

Appendix D

The method for extrapolation of the dominant T wave
down to its initial part uses the exponential function:

y(t) = a + bect . (D1)

This function is specified by the three parameters a, b, and
c. Generally, determination of these parameters requires the
solution of a nonlinear parameter estimation problem. How-
ever, for the problem in hand, inspection of the data revealed
that the weighted mean waveforms were largely noise-free,
and—as became evident from the tests based on the patient
data—all curves closely followed the function described in
Equation D1. Moreover, because the function was to be used
only for extrapolation during the interval up to the timing of
the J point, tJ, a direct computation of the parameters was
used. To this end, three equidistant points in time, t1, t2, and
t3, were selected in the interval between tJ and tapex, the tim-
ing of the peak of the weighted mean curve. The first point,
t1, was placed 20 msec to the right of tJ as identified by the
local minimum in the RMS(t) curve, in order to minimize the
possibility of interference by late depolarization. The second
point, t2, was placed further to the right. Its distance to t1, τ ,
was put at 30% of the interval from tJ to tapex. A further shift
to the right over the same distance τ specifies t3. This leaves
t3 well clear of the peak where, clearly, the function specified
in Equation D1 does not apply. By using an equal distance τ
between the three points in time, the parameters (a, b, c) can
be computed directly from the function values (y1, y2, y3), as
shown below.

Let t1 = t2 − τ, and t3 = t2 + τ.

By using y2 − y1 = bect2 (1 − e−cτ ) and y3 − y2 =
bect2 (ecτ − 1), and by denoting (y3 − y2)/(y2 − y1) = α, as
well as ecτ = x, a quadratic equation emerges: α = x − 1

1 − 1/x ,
having as a relevant solution x = α = ecτ . Hence,

c = ln(α)

τ
, b = y3 − y2

ect2 (ecτ − 1)
, and a = y2 − bect2 .

Acknowledgments: The author acknowledges gratefully the careful reading
of this manuscript and the ensuing corrections by T.F. Oostendorp, J.I. van
Oosterom-Pooley, and M.M. van Pelt.

References

1. De Ambroggi L, Aime E, Ceriotti C, Rovida M, Negroni S: Mapping
of ventricular repolarization potentials in patients with arrhythmogenic
right ventricular dysplasia. Circulation 1997;96:4314-4318.

2. van Oosterom A: Singular value decomposition of the T wave: Its
link with a biophysical model of repolarization. Int J Bioelectromagn
2003;4:59-60.

3. van Oosterom A: Genesis of the T wave as based on an equivalent surface
source model. J Electrocardiol 2001;34S:217-227.

4. Harumi K, Burgess MJ, Abildskov JA: A theoretic model of the T wave.
Circulation 1966;XXIV:657-668.

5. van Oosterom A, Windau G, Huiskamp GJM: Simulation on a PC of
the QRS-T wave forms. In Macfarlane PW, Rautaharju P, eds: Electro-
cardiology ′93. Singapore: World Scientific, 1994, pp. 97-100.

6. Geselowitz DB: On the theory of the electrocardiogram. Proc IEEE
1989;77:857-876.

7. Geselowitz DB: Description of cardiac sources in anisotropic cardiac
muscle. Application of bidomain model. J Electrocardiol 1992;25S:65-
67.

8. di Bernardo D, Murray A: Explaining the T-wave shape in the ECG.
Nature 2000;403:40.

9. Franz M, Bargheer K, Rafflenbeul W, Haverich A, Lichtlen P: Monopha-
sic action potential mapping in a human subject with normal elec-
trograms: Direct evidence for the genesis of the T wave. Circulation
1987;75:379-386.



van Oosterom The Dominant T Wave S187

10. Cowan JC, Hilton CJ, Griffiths CJ, Tansuphaswadikul S, Bourke JP,
Murray A, Campbell RWF: Sequence of epicardial repolarisation and
configuration of the T wave. Br Heart J 1988;60:424-433.

11. Uijen GJH, Heringa A, van Oosterom A, van Dam RT: Body surface
maps and the conventional 12-lead ECG compared by studying their
performances in classification of old myocardial infarction. J Electro-
cardiol 1987;20:193–2002.

12. Heringa A, Uijen GJH, van Dam RT: A 64-channel system for body

surface potential mapping. In Antalôzcy Z, Préda I, eds: Electrocardi-
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